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Creep of polymer foams 

J. S. HUANG, L. J. GIBSON 
Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, 
Massachusetts 02139, USA 

The linear and non-linear creep of polymeric foams are analysed. Measurements of the creep 
of rigid polyurethane foams under constant shear indicate that their behaviour is linear at 
stresses up to half the shear strength; the model describes the data weil. 

1. Introduetion 
There is growing interest in the use of polymer foam 
core sandwich panels as load-bearing components in 
buildings. In addition to offering a high stiffness per 
unit weight and excellent thermal insulation, such 
panels may be easily mass produced. Polymers creep 
at room temperature, however, limiting their use in 
structural applications. In order to exploit fully the 
potential of polymer foam core structural sandwich 
panels there is a need to understand their creep beha- 
viour. The present work aimed to develop models 
for the creep of rigid polymer foams in terms of the 
creep of the solid polymer and the initial moduli of the 
foam and the solid. 

At the simplest level, many solid polymers are linear 
viscoelastic: that is, creep strains at a given time vary 
linearly with stress under a constant load. Linear 
viscoelasticity can be described in a phenomenological 
way using spring dashpot models or in a mechanistic 
way using transition stare theories [1]. At large 
strains, or long loading times, many polymers become 
non-linear viscoelastic: the strain at a given time is no 
longer proportional to the applied stress. Descriptions 
of non-linear viscoelasticity rely on empirical func- 
tions as the mechanism of non-linear viscoelasticity is 
not yet well understood. 

Although there have been several experimental 
studies of the creep of polymer foams, little modelling 
has been done. The following section provides a re- 
view of the available literature. Then models for the 
creep of both linear and non-linear viscoelastic poly- 
meric foams, based on the model of Gibson and Ashby 
[2, 3], are developed. The results are compared with 
data from 1200 h creep shear tests on several densities 
of rigid polyurethane foam; agreement is good. 

2. Literature review 
2.1. Creep of solid polymers 
The creep of a foam depends on that of the solid from 
which it is made. At the simplest level, polymers may 
be linear viscoelastic, such that in a creep test the 
strain at any given time is proportional to the applied 
stress; the constant of proportionality is given by the 
time-dependent creep compliance. Linear viscoelastic 
polymers obey the Boltzman superposition principle: 

0022-2461/91 $03.00 + .12 �9 1991 Chapman and Hall Ltd. 

the strain resulting from a complex loading history 
can be obtained by simply summing the strains for 
each load increment [1]. 

If loaded to large strains (or stresses) or for long 
periods of time, many polymers become non-linear 
viscoelastic: the strain at a given time is no longer 
linearly proportional to stress. Their behaviour is 
described either by empirical equations or by general 
rheological constitutive equations, neither of which, 
however, gives any insight into the underlying mech- 
anisms of deformation; this awaits further develop- 
ment. Empirical equations for non-linear viscoelas- 
ticity include those of Pao and Marin [4, 5], Findley 
and Khosla [6] and Van Holde [7]. Pao and Marin 
have proposed a power law dependence of strain, 8, on 
stress, cy, similar to that describing the creep of metals 

8(cy, t) = cy/E + Ko"(1 - e -qt) + Bcr"t (1) 

where E, K, n, q and Bare  material constants and t is 
time. Findley and Khosla [6] used a power law time 
dependence in conjunction with a hyperbolic sine 
stress dependence: 

~(t) = 80 + rot" (2) 

8(cy, t) = a¦ ~ + m' t"s inh--~ (3) 
(3" e O" m 

! t where 80, cy e, m,  n and cy m are material constants. Van 
Holde [7] has suggested a variation on this with 

,~ cye, n = 1/3 and 1 / ( Y  m = 0~, giving 

~(~,t) = 80 + m'tl /3sinh~cy (4) 

where 80, m' and ~ are again material constants. Note 
that the last two expressions reduce to Equation 2 if 
cy/~r and o/cy m are small or if cz~ is small. All of these 
empirical equations are for creep under a single incre- 
ment of load; none is adequate for the prediction of 
creep under more complex stress histories or stress 
states. 

For this, more general rheological constitutive'equ- 
ations are theoretically required: Ward and Onat [8] 
have found that Green and Rivlin's multiple integral 
representation of non-linear viscoelasticity [9-11] is 
applicable. The difficulty with this approach is that it 
is complex, requiring a large number of material para- 
meters in the creep equation. The number depends on 
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the stress state: for the simple case of pure tension it is 
7, for combined tension and torsion it is 19. Studies 
comparing the results of multiple integral representa- 
tion with those of other, simpler representations such 
as the hyperbolic sin or non-linear Maxwell models 
show that multiple integral representation is no better 
at predicting creep under complex stress histories and 
stress states [12, 13]. 

For practical purposes, at least under simple stress 
states and load histories, we make use of the following 
empirical equation describing the non-linear visco- 
elastic behaviour of solid polymers 

e s = % + mt n 

= (~¦ + m't")s inh(%/Co) (5a) 

where es and c s are the strain and stress in the solid, 
respectively, and a¦ m', n and Oo are the creep para- 
meters of the solid. It is equivalent to Equation 3 with 
ce = Cm = O0; it is preferred as it retains the hyper- 
bolic sine dependence on stress yet is simpler to ana- 
lyse. Note that it reduces to the linear viscoelastic 
equation 

es = (~¦ + rn ' t " )~  (5b) 

f o r c  s ~ o  o a n d w i t h c  o = E  s . 

2.2. Creep of po lymer  f o a m s  
Several experimental studies of creep in polyurethane 
and polystyrene foams have been carried out. Findley 
and Stanley [14] measured the creep response over a 
2 h period of a single-density (330 kg m -  3) rigid poly- 
urethane foam under uniaxial tension and compres- 
sion, pure torsion, and combined tension and torsion 
for incremental stress histories. Stress levels varied 
from 25 % to 100% of the yield strength of the material, 
as defined by the first deviation from linearity in the 
stress-strain curve. They found that the material was 
non-linear and that the multiple integral relationship 
gave a good description of creep for both multiaxial 
stress states and for complex stress histories. Because 
the application of the multiple integral theory is com- 
plex, they also used a modified superposition principle 
to estimate their results; this, too, gave satisfactory 
results. Following this study, Nolte and Findley [15] 
compare d the creep behaviour of fully dense, solid 
polyurethane with that of the foamed polyurethane of 
Findley and Stanley [14]. They found that for stress 
levels less than about two-thirds of the plastic yield 
strength, the creep strain of the foam could be found 
simply by multiplying the creep function of the solid 
times the ratio of the initial stiffnesses of the solid and 
foam. As the stress level in the foam increased, this 
simple approach increasingly underpredicted the 
measured creep strains. As is discussed below, these 
results suggest that the rigid polyurethane foam tested 
was linear at stress levels up to about two-thirds of the 
yield stress, becoming increasingly non-linear at 
higher stress levels; the linear data are weil described 
by an equation of the form of Equation 2. 

Davies [16] reports the results of Just [17] on creep 
of sandwich beams with flat metal faces and rigid 
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polyurethane foam cores. The creep of the beams is 
governed by the creep of the foam core in shear; the 
results indicate that the creep of the foam varies 
according to 7 = 70 + mt" for times of up to 10 y; n 
was found to be 0.36. The results indicated that creep 
parameters estimated from 1000 h tests gave a good 
prediction of creep after 10 y. 

Brown [18] and Hart et al. [19] report the results of 
creep tests on foamed polystyrene. Brown's data at 
stress levels below the compressive collapse stress of 
the foam are too limited to determine their linearity. 
Hart and his colleagues measured the long-term (1000 
to 10000 h) creep at temperatures between 23 and 
50 ~ At temperatures up to 45 ~ and at stress levels 
of 0.28 and 0.41 MPa, the polystyrene foam was linear 
viscoelastic while at 50 ~ it became markedly non- 
linear (the glass temperature of polystyrene is about 
110 ~ They showed that the activation energy for 
the creep process in the foamed polystyrene was 
within 5% of that of solid polystyrene. 

From the experimental studies on the creep of 
foamed polymers there is general agreement on the 
following. The strain, ~, at a constant stress, c, can be 
described by 

= ~o + rnt" (6) 

At low stresses relative to the yield stress and at low 
temperatures relative to the glass temperature, rigid 
polyurethane and polystyrene foams are linear vis- 
coelastic while at high stresses and temperatures they 
become non-linear viscoelastic. 

The only model for creep of foams is that of Gibson 
and Ashby [3] who describe the secondary, steady 
state creep Strain rate of a foam made from a solid 
obeying power-law creep; this model is inapplicable to 
polymer foams as polymers do not develop a steady 
state creep rate. 

3. Modelling 
We consider the creep of a foam made from a linear 
viscoelastic sotid; the non-linear viscoelastic case is 
described in the Appendix. We assume that the solid 
cell wall material is isotropic and has the same creep 
parameters in both tension and compression. The 
derivation is based on dimensional arguments used by 
Gibson and Ashby [2] to estimate the Young's modu- 
lus of an isotropic foam with a linearly elastic cell-wall 
material. Their argument can be briefly summarized 
as follows. A cell in an open-cell foam is represented 
by the cubic structure shown in Fig. la; because the 
analysis is based on dimensional arguments, the exact 
geometry of the cell is not important. Each cell wall 
has a length, l, and cross,section, b 2. The important 
feature here is that the adjacent cell walls are staggered 
so that a uniaxial load on the foam induces bending in 
the cell walls, as is observed in foams. A load F on the 
cell wall (Fig. lb) produees a bending deflection, ¦ 
proportional to Fl3/EsI, where Es is the Young's 
modulus of the cell-wall material and I is the second 
moment of area of the wall's cross-section. The remote 
stress, c, is proportional to F/l  2, while the remote 
strain, a, is proportional to ¦ Combining these 
expressions and noting that the relative density of the 
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Figure 1 (a) Cubic cell used for dimensional analysis of foam modu-  
lus, (b) the  deflection, ~, of the cell walls under a load, F. 

foam, (P*/P~), is proportional to (b/l)  2 gives the 
Young's modulus of the foam, E* 

E * / E  s = C,(p*/p�9 2 (7) 

where C1 is a constant of proportionality relating to 
the cell geometry. A similar analysis leads to a relative 
shear modulus for a foam of 

G * / 6  s = C'~(p*/O~) 2 (8) 

Gibson and Ashby have found that both results give a 
good description of the moduli of open-cell foams with 
C1 = 1 and C'~ = 0.4. Equations 7 and 8 can also be 
used for closed-cell foams in which most of solid is 
concentrated in the cell edges; many polymer foams 
are like this as a result of surface tension forces which 
draw material from the faces into the edges during the 
foaming process. 

Now consider the linear viscoelastic behaviour of a 
foam in which the solid cell-wall material creeps ac- 
cording to Equation 5b 

t n G ' S  e�9 = (~¦ + m t )~-  (9) 

where E s is the Young's modulus of the solid at zero 
time. Note that if this equation is used to describe the 
long-term creep rather than the short-term creep of 

the solid, % may not be equal to one. A stress, ~, 
acting on the foam induces bending moments in t h e  
cell wall, M, proportional to o/3. The bending mo- 
ments, in turn, induce internal stresses within the solid 
cell wall material, cys, which are proportional to M/b 3. 
Combining these expressions gives % oc cy(1/b) 3. The 
bending moments also produce deflections, 6, in the 
cell wall. At zero time, this is 

M I  2 
6 oc (10) 

E f l  

We can also write that the curvature of the bent walls 
at zero time, ic, is proportional to the strain in the cell 
wall, e s 

8s 
K 0(2 - -  

b 

M 
oc (11) 

E f l  

where, b, as before, is the thickness of the cell wall. 
Combining the last two expressions we obtain 

6b 
~s oc i~- (12) 

And because 8/l  is simply the strain in the bulk foam, 

l 
OC Ss~ 

, � 9  ~ s / l \  

, o / 1 \  4 

Noting, as before, that the relative densitY of the 
foam, P*/Ps, is proportional to (b/l) z and setting 
E* = Cl(p*/ps) 2 E~ (Equation 7) we obtain 

(7 
g(cy, t) oc (g¦ + ra't") Cl(p , /ps)2E~ (14) 

(7 
= (~¦ + ra't") . (15) 

E 

giving the strain in the foam in terms of the creep 
parameters of the solid cell-wall material (ao, m, n), the 
initial Young's modulus of the foam, E*, and the stress 
on the foam, ] Because all of the constants of propor- 
tionality are the same in the elastic and creep analyses; 
the constant C1 is the same in both cases. 

In terms of creep compliance of the foam, J*(t) ,  we 
ean write 

e 
J * ( t )  = - -  

(y 

(e¦ + rn't") 
--  (16) 

E*  

Noting that the creep compliance of the solid, 
(Equation 9) 

J ~ ( t ) -  a~ 
Us 

I ~o -1- m ' t n  

Es 

Jd t ) , i s  
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Figure 2 Loading jig for testing foam specimens in shear in the 
Instron testing machine. 

gives 

J*(t) = Js(t)E~ 

For creep under shear loading this becomes 

(~'¦ + m't")z 
y - 

G* 
and 

(17) 

j Gs J*(t) = s(t) ~ -  (18) 

4. Experimental procedure 
The experimental programme was aimed at measuring 
the creep response of several densities of rigid poly- 
urethane foam in shear, as this is the primary loading 
on cores of structural sandwich panels. The experi- 
ments were designed to test the model of the previous 
section. 

Four densities of rigid polyurethane foam were used 
in the experimental programme: 32, 48, 64 and 
96 kg m-3. Owing to the rise of the gas during the 
foaming process, foams are generally axisymmetric in 
their structure and properties; the degree of aniso- 
tropy can be characterized by measuring the cell 
length and the Young's modulus in each of the three 
principal directions. The cell dimensions were found 
by measuring the mean intercept lengths in the prin- 
cipal directions on scanning electron micrographs. 
The Young's moduli in the three principal directions 
were obtained from compression tests, performed on 
38 mm cubes of each i]ensity of foam. 

The shear modulus and shear strength of each dens- 
ity of foam were measured in the most isotropic plane 
at a strain rate of roughly 5 • 10-3sec -x using the 
loading jig shown in Fig. 2; this jig is similar to that 
recommended in ASTM C273 1-20-1 for shear testing of 
sandwich panel cores. 
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Figure 3 Loading jig for creep tests on foam sp6cimens in shear. 

Creep tests were performed on the foam specimens 
by loading them in shear with dead weights as shown 
in Fig. 3. Four load levels were used for each density: 
roughly 10%, 20%, 30% and 40% of the shear 
strength. The highest stress level was limited to 40% of 
the shear strength as it is unlikely that foam cores in 
sandwich panels will be loaded beyond this level. One 
specimen was tested at each load level for each density 
of foam. LVDTs with a range of 1.27 mm, accurate to 
+ 0.0021 mm were mounted on to the loading jigs to 

measure deflections. The outputs from the 16 LVDTs 
were recorded using a digital data acquisition system. 
The specimens were loaded for 1200 h and then un- 
loaded; deflection measurements were taken up to 
450 h after unloading. The creep tests were done in a 
chamber at a constant temperature of 23 -t- 1 ~ and a 
constant relative humidity of 20% _+ 2%. 

5. Results and discussion 
The mean intercept lengths of the cells and the 
Young's moduli in the three principal directions are 
listed in Tables I and II, respectivety. For an axisym- 
metric foam with the rise in the x 1 direction we expect 
that R23 ~ 1 and that R12 and R13 are roughly equal. 
Similarly, we expect the Young's modulus in the xl 
direction to be larger than the roughly equal moduli in 
the xz and x3 directions 1-21]. The data suggest that 

T A B L E  I Shape anisotropy ratios 

Foarn density (kg m -  3) 

32 48 64 96 

11 0.277 0.223 0.223 0.181 
l 2 0.263 0.199 0.212 0.147 
13 0.217 0.189 0.192 0.150 
Rlz 1.056 1.122 1.050 1�9 
Rls  1.280 1.181 1.164 1.203 
R23 1.212 1.053 1.109 0.979 

Notes: l i is the mean intercept length in the i direction; R~j = ll/l~ 
= shape anisotropy ratio for the ij plane, xl is the rise direction. 



T A B L E  II Young's modulus 250 

Foam density (kgm -a) 

32 48 64 96 

E* (MPa) 5.48 11.1 17.2 36.7 
E~ (MPa) 4.55 9.35 14.9 21.8 
E~ (MPa) 3.46 7.26 10.2 26.2 

Note: x~ is the rise direction, 

T A B L E  III Shear modulus and strength 

Foam density (kgm -~) 

32 48 64 96 

Isotropic plane x i - -  x 2 X 2 - -  X 3 x I - -  x 2 X 2 - -  X 3 

Shear modulus, 2.14 2.90 6.97 7.58 
G (MPa) 

Shear strength, 113 157 299 346 
* (kPa) 

the foams are not axisymmetric; rather that they are 
orthotropic, with different mean intercept lengths and 
moduli in all three principal directions. To reduce the 
effect of the anisotropy in the creep tests the shear 
stress was applied in the most isotropic plane; this is 
the plane indicated at the top of Table III. 

A typical stress-strain curve from one of the static 
shear tests is shown in Fig. 4. The shear modulus is 
given by the initial slope of the curve while the shear 
strength is defined as the first deviation from linearity; 
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Figure 4 A typical stress-strain curve from a static shear test on a 
rigid polyurethane foam (p = 32 kgm-3). 

the moduli and strengths are listed in Table III. The 
shear stresses applied to the creep specimens are 
roughly 10%, 20%, 30% and 40% of the shear 
strengths given in Table III; exact values are given in 
Table IV, along with the initial shear modulus of each 
of the creep specimens at 5 sec loading. 

The creep test results are shown in Figs 5 to 8. The 
shear strain data are plotted against time for each 
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Figure 5 Creep shear strain plotted against time for four densities of foam: (a) 32 kgm s (b) 48 kgm -3 (c) 64 kgm -3 and (d) 96 kgm -3. 
( --) Theoretical results. 
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density of foam and each stress level in Fig. 5. The 
data are reduced to give plots of log(y - Yo) against 
log (time) in Fig. 6; values for Yo were found using a 
trial and error procedure such that log(y - Yo) was a 
linear function of log (time), that is 

log(y - Yo) = log(m) + nlog(t)  (19) 
o r  

Y = Yo + rot" (20) 

The value of m is given by the intercept of the plot at 
a time of 1 h, that of n by the slope; the results are 
summarized in Table V. The value of n was found to 
be constant at 0.155, independent of both stress and 
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foam density; this is identical with that found by 
Findley and his co-workers for both solid and foamed 
polyurethane 1-14, 15]. Yo and m a r e  both linear func- 
tions of stress normalized by the shear modulus 

7 = 7o + rot" 

(T¦ + m't")'c 
- ( 2 1 )  

G* 

with Y¦ = 0.761 (R z = 0.99) and m'  = 0.384 h a/" (R 2 
= 0.97); both constants are found by linear regres- 

sion. In terms of the creep compliances of the foam 

(Fig. 7) giving 
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Figure 8 The product of creep compliance times shear modulus plotted against time: (a) 32 k g m  -3 (b) 48 k g m  -3 (c) 64 k g m  3 and 
(d) 96 kg m -  3. ( ) Theoretical results. 

and the solid we can write 
t J*(t)G* = 5'o + ra't" 

= J s ( t ) G s  (22) 

The product of the creep compliance and the shear 
modulus of each foam specimen is a constant function 
of time, independent of the stress level and the foam 
density; note that this is in agreement with Nolte and 
Findley's data for solid and foamed polyurethane. 
Data for this product are plotted against time in 
Fig. 8, along with the prediction of Equation 21. The 
product tends to decrease slightly as the density of the 
foam increases; agreement is still reasonably good, 

T A B L E  IV Creep specimens - stress levels and shear moduli 

Foam density ( k g m  -3) 

32 48 64 96 

z I (kPa) 10.6 13.7 27.5 32.6 
G* (MPa)" 2.20 3.68 6.78 8.73 

~2 (kPa) b 27.5 55.4 70.9 
G* (MPa)" b 4.00 5.61 7.50 

r 3 (kPa) 32.6 45.9 83.8 107 
G~ (MPa)" 2.44 4.32 6.37 8.01 

~c 4 (kPa) 45.9 55.4 107 137 
G* (MPa)" 2.56 4.26 7.34 8.06 

a Shear moduli are calculated from the deflection at 5 sec during the 
creep test. 
b The 32 kg m - 3  specimen with z2 broke during loading. 

however. The results of the model are also compared 
with the strain data in Fig. 5, in which the solid lines 
represent the model (Equation 18). Agreement is 
good; the model predicts the measured creep strains to 
within 10% in all cases. 

The data for unloading are treated in a similar way 
as that for loading; they are fitted to an equation of the 
form of Equation 20 with the strain replaced by the 
recovered strain, Ymax -- Y and with time, t, replaced by 

T A B L E  V Data for creep parameters 70, m and n for constant 
load 

Density x Yo m n 
( k g m  -3) (kPa) ( x 10 -3) (10 -3 h 1/") 

32 10.6 3.6 2.34 0.155 
32.6 9.8 5.31 0.155 
45.9 11.8 8.79 0.155 

48 13.7 2.5 1.61 0.155 
27.5 5.0 2.59 0.155 
45.9 8.5 3.76 0.155 
55.4 9.5 5.96 0.155 

64 27.5 3.2 1.37 0.155 
55.4 8.0 3.6 0.155 
83.8 10.5 4.16 0.155 

107 11.5 5.39 0.155 

96 32.6 2.8 1.43 0.155 
70.9 8.0 2.54 0.155 

107 11.0 4.47 0.155 
137 13.2 5.79 0.155 
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Figure 9 Schematic illustration of shear strain against time, show- 
ing the time independent strain, 7o, the maximum strain, 7m�9 the 
current strain, 7, and the recovered creep strain, Ym�9 -- 70 --  7. 

the  t ime  af ter  u n l o a d i n g ,  t u 

7m~x -- Y = 7o + mut"�9 (23) 

whe re  Ymax is the  s t ra in  at  the  t i m e  of  u n l o a d i n g  (in this 

case  a t  t = 1200 h), 7 is the  cu r r en t  s t ra in  a n d  Vo is 

t a k e n  to  be e q u a l  for b o t h  l o a d i n g  a n d  u n l o a d i n g  

(Fig.  9). T h e  shea r  s t ra in  d a t a  for  u n l o a d i n g  are  first 

p l o t t e d  aga ins t  t ime  in Fig.  10; a d o u b l e  log  p lo t  o f  the  

r e c o v e r e d  c reep  s t ra in ,  Ymax-  ')tO- ~/, aga ins t  t ime  

af ter  u n l o a d i n g ,  t�9 is t hen  m a d e  (Fig.  11), f r o m  wh ich  

va lues  for  mu a n d  n u are  f o u n d  (Tab le  VI). Because  n u 

is a c o n s t a n t  a n d  mu is a l inear  f u n c t i o n  of  stress 

TABLE VI Data for the creep parameters 7�9249 m�9 and n�9 for 
unloading 

Density "~ 7max m~ n~ 
(kgm -3) (kPa) ( x 10 -3) (10- 3 h 1/") 

32 10.6 11.2 i.59 0.105 
32.6 26.5 3.90 0.105 
45.9 37.3 6.86 0.105 

48 13.7 7.98 1.50 0.105 
27.5 14.0 2.00 0.105 
45.9 20.5 2.92 0.105 
55.4 28.2 5.14 0.105 

64 27.5 7.82 0.85 0.105 
55.4 - - - 
83.8 23.6 3.31 0.105 

107 27.5 4.17 0.105 

96 32.6 7.66 1.36 0.105 
70.9 16.0 2.00 0.105 

107 - - - 
137 30.4 4.89 0.105 

Note: The deflection gauges on two specimens broke during un- 
loading. 

(Fig. 12) the strain on unloading can be written as 

T 
Y = (Y¦ + m ' ~ t ª  (24) 

wi th  7¦ = 0.761 (R  2 = 0.99), m'�9 = 0.310 (R  2 = 0.96) 

a n d  nu = 0.105. T h e  sol id  l ines in Fig.  10 are  p lo t s  of  

E q u a t i o n  23; they  give a g o o d  desc r ip t i on  of  the  d a t a  
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Figure 10 Shear strain plotted against time after unloading: (a) 32kgm -3 (b) 48kgm 3 (c)64kgm -3 and (d) 96kgm -3. ( 
Theoretical results. 
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Figure 11 A double logarithmic plot of recovered creep shear strain against time after unloading: (a) 32 kg m -  3, (b) 48 kg m 3, (c) 64 kg m 3 
and (d) 96 kg m -  3 The data lie on a straight line indicating a power law dependence of recovered creep shear strain on time after unloading. 

in all cases except the highest load level on the 
48 kg m -  3 density foam. 

6. Conclusions 
The linear and non-linear viscoelastic behaviour of 
polymer foams have been analysed, giving expressions 
for the creep of a foam in terms of the creep of the solid 
polymer and the relative density of the foam. A series 

~ 8 , , 
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g0 

i o  o ¦  
c 

A 

g 2  
i 

i-= 

0 i i 

10 2O 30 4O 5O 
Shear stress/initiat sheor modul.us, "~[G (10 -3) 

Figure I2 Measured values of m�9 plotted against shear stress nor- 
malized by the shear modulus for each creep specimen (Table IV); 
m u is a linear function of stress. ( [] ) 32 kg m -  3, ( A ) 48 kg m -  3, ( �9 ) 
6 4 k g m  -3, ( �9  9 6 k g m  -3. 

of creep tests on rigid polyurethane foams of different 
densities suggest that at stress levels less than half the 
yield strength of the foam: 

(a) rigid polyurethane foam is linear viscoelastic, 
even at relatively long loading times; 

(b) the creep strain for loading is well described by 
Equation 21 

(Y¦ + m't")~ y -- 
G* 

with Y¦ = 0.761, m' = 0.384 h 1/" and n = 0.155; 
(c) the creep strain for unloading is well described 

by Equation 24 

T 
m p tn~] 7 = (Y¦ + ~-~ ' G *  

with 7¦ = 0.761, m'u = 0.310 h 1/"" and n u = 0.105; 
(d) creep of any density of a rigid polyurethane 

foam at stress levels below half the shear strength can 
be found knowing the creep compliance of a sing!e 
density and the shear moduli of both densities, as 
described by the result of the model for linear visco- 
elastic foams (Equation 22) 

J*( t )G* = Js(t)Gs 

These resutts, combined with Just's observation 
[-17] that long-term (10 y) cree p of rigid polyurethane 
foam can be estimated on the basis of 1000 h tests, give 
a satisfactory means of estimating long-term creep for 
any density of a linear viscoelastic foam. 
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Appendix:  creep of a non- l inear  
viscoelastic foam 
The creep of a foam made from a non-linear viscoelas- 
tic solid is found in the same way as indicated in 
Section 3; the calculation is complicated by the ana- 
lysis of the beam deflection of a non-linear solid. We 
assume that plane cross-sections of the beam remain 
plane, and that the solid is isotropic and creeps in both 
tension and compression according to (Equation 5a) 

es = ~:o + mtn 

= (e¦ + m ' t " ) s i n h ( C r ~ ¦  

Consider first the bending of a solid square beam, of 
section b 2, which creeps according to Equation A1. 
Following the method of Findley and Poczatek [22], 
we find that the strain in the beam is equal to 

Y ~s = - (A2) 
r 

where y is the distance from the neutral axis and r is 
the radius of curvature of the beam. Equating A1 and 
A2 and inverting gives 

% = ~~ r(e ¦ + ra't") 
o r  

% = ~osinh-l(Ny) (A4) 
where 

1 
N - (A5) 

r(e ¦ + ra't") 

Using the conditions of equilibrium, Findley and 
Poczatek [22] show that the neutral axis is at the 
centre of the beam and that the moment, M, at a 
section in the beam is given by 

~ b/2 
M = b c~y dy 

,J - b/2 

I 
b/Z 

= boo ysinh-l(Ny)dy (A6) 
B - b~ 2 

After integrating and rearranging, they find 

8M 
~ o  b3 

-- ( ~ ~ b ) - 2 { [ 2 ( N b - ) 2 + l l s i n h - l ( ~ ~ b )  

Because N depends only on the bending moment, M, 
the size of the beam, b, and the beam material pro- 
perty, Co, and is independent of time, the stress dis- 

tribution within the beam is also independent of time 
(Equation A3). To solve for the stress distribution in 
terms of the bending moment in Equation A3, N taust 
be solved in terms of M from Equation A7. Because 
there is no closed form solution of Equation A7 we 
approximate the function as 

Nb . / 8 C I M \  
- slnh ~ ~~b3- ) (A8) 

2 

With C1 = 0.65, the maximum error arising from 
using Equation A8 rather than Equation A7 is about 
10% for values of Nb/2 up to 5. 

Consider next the creep of a foam made up of a 
non-linear viscoelastic material obeying Equation A1. 
Under a uniaxial stress, •*, the cell walls bend, as 
shown schematically in Fig. Ib. The bending deflec- 
tion, 6, is proportional to 12/r or, using Equation A5, 

oc /2N(~ ¦ + ra't") (A9) 

Substituting Equation A8 for N, setting the strain in 
the foam, e, proportional to ¦ and setting the 
bending moment on the cell wall, M, proportional to 
y ~ gives the strain in the foam, a, as a function of the 
stress on the foam, ~, and the time, t 

e oc }(e¦  s  - -  ( A I O )  
(5" o 

Noting that the relative density, p*/Ps, is proportional 
to (b/l) 2 we obtain 

g OC Q B ~ ) l / 2 ( ~ ¦  " ~ - D l " n ) s i n h l y  (~s ~3/2(yo~O*J ] 

(All) 

Note that when the argument of the hyperbolic sine is 
large (corresponding to Nb/2 > 5) the sinh factor is 
replaced by an exponential. For the special ease of a 
small argument, the result reduces to the linear vis- 
coelastic case Equation 15. 
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